

Types of Operators

Arithmetic

Relational

Logical

Assignment

Increment/
Decrement

Conditional

Bitwise

Special

Precedence of Operators
 There are 2 different priorities of arithmetic operators

 High Priority: * / %
 Low Priority: + -

 The equation is evaluated in two passes
 First pass: High priority operators
 Second pass: Low priority operators

Expression: x=9-12/3+3*2-1
 1st Pass

x=9-4+3*2-1
x=9-4+6-1

 2nd Pass
x=5+6-1
x=11-1
x=10

Rules for Evaluation of Expression
 Parenthesized sub expression from left to right are

evaluated

 If parenthesis are nested evaluation begins with
innermost braces

 If operators of same precedence are encounter then
associativity is used

 Arithmetic expression are evaluated from left to right

Operator Description Precedence Associativity

()
[]
.

->
++ --

Parentheses (function call) (see Note 1)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement (see Note 2)

1

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

2

right-to-left

* / % Multiplication/division/modulus 3 left-to-right
+ - Addition/subtraction 4 left-to-right

<< >> Bitwise shift left, Bitwise shift right 5 left-to-right

< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to 6

left-to-right

== != Relational is equal to/is not equal to 7 left-to-right
& Bitwise AND 8 left-to-right
^ Bitwise exclusive OR 9 left-to-right
| Bitwise inclusive OR 10 left-to-right

&& Logical AND 11 left-to-right
|| Logical OR 12 left-to-right
?: Ternary conditional 13 right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

14

right-to-left

, Comma (separate expressions) 15 left-to-right

Type Conversions

Implicit Explicit

Automatic In
Assignments

The data type of one operand is converted into data type of another operand

Implicit Type Conversion
 Implicit type conversion, also known as coercion

 An automatic type conversion by the compiler

 If operands are of different types then lower type is
automatically converted to higher type

long double

double

float

int

char, short int

Automatic

In Assignment
 Type of right hand side is converted to type of left hand

side

 If right hand operand is lower rank then it will be
promoted
 float = int
 int = char

 If right hand operand is higher rank than it will be
demoted
 char=int
 int=float

Explicit/Type Casting
 Is done with the help of cast operator

 Cast operator is a unary operator that is used for converting
an expression to a particular data type

 Syntax:
 (datatype) expression

 Ex:
int x,y;
float x=(float)x/y;

Types of Operations

Input Output

The set of library functions that perform input-output operation is known
as standard input/output library (stdio.h)

Reading a Character
 getchar();

 Accepts any character keyed in including
 return (enter)
 tab space

 Ex:
char variable_name;
variable_name=getchar();

Writing a Character
 putchar(variable_name);

 Displays char represented by var_name on the
terminal

 Ex:
char c=getchar();
putchar(c);

Conversion Specifications
Specifier meaning

%c a single character

%d or %i decimal integer

%f floating point number

%lf long range floating point (double)

%Lf long double

%h short int

%s string

%u unsigned decimal integer

%o octal integer

%x hexadecimal

Formatted Input
 C provides scanf() function for entering input data
 Syntax

 scanf(“control string”, address1, address2….);

 Control string specifies the format in which data has to be entered

 address1, address2 specifies the address of locations where data
is to be stored

Examples Integer Numbers
 Format: %wd

 w is the field width

 Ex 1
int marks;
scanf(“%d”,&marks);

 Ex 2
char str[30];
scanf(“%s”,str);

 Ex 3
int basic,da;
scanf(“%d%d”,&basic,&da);

 Ex 4
int hra,da;
scanf(“%d:%d”,&hra,&da);

 Ex 5
int num1,num2;
scanf(“%2d %5d”,&num1,&num2);

 21 will be assigned to num1 and 345 will be assigned to num2
and 50 that is unread will be assigned to next scanf call

15:20

21345 50

Examples Real Numbers
 Ex 1

float x;
scanf(“%f”,&x);

 Assigns: 4.321 to x

 Ex 2
double y;
scanf(“%lf”,&y);

Examples char and string
 Ex 1

char name[20];
scanf(“%s”,&name);

 Ex 2
char name[20];
gets(name);
puts(name);

Rules for scanf
 Each variable must have a field specification
 For each field specification there must be variable

address
 The scanf reads until

 A white space is found in numeric specification
 the maximum number of characters have been read
 An error is detected
 The end of file is reached

Formatted Output
 printf() is used for printing results

 printf(“control string”, arg1,arg2…..);

 Control String specifies
 characters that will be printed on screen
 Format Specifications
 Escape sequence characters

Examples

 printf(“Programming in C”);
 printf(“\n”);
 printf(“%d”,x);
 printf(“x=%d\n”,x);
 printf(“The value of a is %d”,a);

 printf does not supply new line automatically. Thus
‘\n’ is used

Integer Examples
 printf(“%d”,9678);

 printf(“%6d”,9678);

 printf(“%2d”,9678);

 printf(“%-6d”,9678);

 printf(“%06d”,9678);

9 6 7 8

9 6 7 8

9 6 7 8

9 6 7 8

0 0 9 6 7 8

Real Examples
 Syntax: %w.pf

 w indicates the number of digits used for display
 p indicates the number of digits to be displayed after

decimal
 Let y=98.7654;

 printf(“%7.4f”,y);

 printf(“%7.2f”,y);

 printf(“-7.2f”,y);

9 8 . 7 6 5 4

9 8 . 7 7

9 8 . 7 7

String Examples
 Syntax: %w.ps

 w specifies width of field
 p specifies only first p characters of string are displayed

 Ex:
 char a[20]=“Hello World”;
 printf(“%s”,a);

H e l l o W o r l d

 printf(“%25s”,a);

 printf(“%25.4s”,a);

 printf(“%-25.7s”,a);

H e l l o W o r l d

H e l l

H e l l o W

	Operators and Hierarchy
	Types of Operators
	Precedence of Operators
	Slide Number 15
	Rules for Evaluation of Expression
	Slide Number 17
	Type Conversions
	Implicit Type Conversion
	Automatic
	In Assignment
	Explicit/Type Casting
	Input/Output
	Types of Operations
	Reading a Character
	Writing a Character
	Conversion Specifications
	Formatted Input
	Examples Integer Numbers
	Slide Number 30
	Examples Real Numbers
	Examples char and string
	Rules for scanf
	Formatted Output
	Examples
	Integer Examples
	Real Examples
	String Examples
	Slide Number 39

