


Types of Operators

Arithmetic

Relational

Logical

Assignment

Increment/
Decrement

Conditional

Bitwise

Special



Precedence of Operators
 There are 2 different priorities of arithmetic operators

 High Priority: * / %
 Low Priority: + -

 The equation is evaluated in two passes
 First pass: High priority operators 
 Second pass: Low priority operators



Expression: x=9-12/3+3*2-1
 1st Pass

x=9-4+3*2-1
x=9-4+6-1

 2nd Pass
x=5+6-1
x=11-1
x=10



Rules for Evaluation of Expression
 Parenthesized sub expression from left to right are 

evaluated

 If parenthesis are nested evaluation begins with 
innermost braces

 If operators of same precedence are encounter then 
associativity is used

 Arithmetic expression are evaluated from left to right



Operator Description Precedence Associativity

()
[]
.

->
++ --

Parentheses (function call) (see Note 1)
Brackets (array subscript)
Member selection via object name
Member selection via pointer
Postfix increment/decrement (see Note 2)

1

left-to-right

++ --
+ -
! ~

(type)
*
&

sizeof

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise complement
Cast (change type)
Dereference
Address
Determine size in bytes

2

right-to-left

* / % Multiplication/division/modulus 3 left-to-right
+ - Addition/subtraction 4 left-to-right

<< >> Bitwise shift left, Bitwise shift right 5 left-to-right

< <=
> >=

Relational less than/less than or equal to
Relational greater than/greater than or equal to 6

left-to-right

== != Relational is equal to/is not equal to 7 left-to-right
& Bitwise AND 8 left-to-right
^ Bitwise exclusive OR 9 left-to-right
| Bitwise inclusive OR 10 left-to-right

&& Logical AND 11 left-to-right
|| Logical OR 12 left-to-right
?: Ternary conditional 13 right-to-left
=

+= -=
*= /=

%= &=
^= |=

<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR assignment
Bitwise shift left/right assignment

14

right-to-left

, Comma (separate expressions) 15 left-to-right



Type Conversions

Implicit Explicit

Automatic In 
Assignments

The data type of one operand is converted into data type of another operand



Implicit Type Conversion
 Implicit type conversion, also known as coercion

 An automatic type conversion by the compiler

 If operands are of different types then lower type is 
automatically converted to higher type



long double

double

float

int

char, short int

Automatic



In Assignment
 Type of right hand side is converted to type of left hand 

side

 If right hand operand is lower rank then it will be 
promoted
 float = int
 int = char

 If right hand operand is higher rank than it will be 
demoted
 char=int
 int=float



Explicit/Type Casting
 Is done with the help of cast operator

 Cast operator is a unary operator that is used for converting 
an expression to a particular data type

 Syntax:
 (datatype) expression

 Ex:
int x,y;
float x=(float)x/y;





Types of Operations

Input Output

The set of library functions that perform input-output operation is known 
as  standard input/output library  (stdio.h)



Reading a Character
 getchar();

 Accepts any character keyed in including 
 return (enter)
 tab space

 Ex:
char  variable_name;
variable_name=getchar();



Writing a Character
 putchar(variable_name);

 Displays char represented by var_name on the 
terminal

 Ex:
char c=getchar();
putchar(c);



Conversion Specifications
Specifier meaning

%c a single character

%d or %i decimal integer

%f floating point number

%lf long range floating point (double)

%Lf long double

%h short int

%s string

%u unsigned decimal integer

%o octal integer

%x hexadecimal



Formatted Input
 C provides scanf() function for entering input data
 Syntax

 scanf(“control string”, address1, address2….);

 Control string specifies the format in which data has to be entered

 address1, address2 specifies the address of locations where data 
is to be stored



Examples Integer Numbers
 Format: %wd

 w is the field width

 Ex 1
int marks;
scanf(“%d”,&marks);

 Ex 2
char str[30];
scanf(“%s”,str);

 Ex 3
int basic,da;
scanf(“%d%d”,&basic,&da);



 Ex 4
int hra,da;
scanf(“%d:%d”,&hra,&da);

 Ex 5
int num1,num2;
scanf(“%2d %5d”,&num1,&num2);

 21 will be assigned to num1 and 345 will be assigned to num2 
and 50 that is unread will be assigned to next scanf call

15:20

21345 50



Examples Real Numbers
 Ex 1

float x;
scanf(“%f”,&x);

 Assigns: 4.321 to x

 Ex 2
double y;
scanf(“%lf”,&y);



Examples char and string
 Ex 1

char name[20];
scanf(“%s”,&name);

 Ex 2
char name[20];
gets(name);
puts(name);



Rules for scanf
 Each variable must have a field specification
 For each field specification there must be variable 

address
 The scanf reads until

 A white space is found in numeric specification
 the maximum number of characters have been read
 An error is detected
 The end of file is reached



Formatted Output
 printf() is used for printing results 

 printf(“control string”, arg1,arg2…..);

 Control String specifies
 characters that will be printed on screen
 Format Specifications
 Escape sequence characters



Examples

 printf(“Programming in C”);
 printf(“\n”);
 printf(“%d”,x);
 printf(“x=%d\n”,x);
 printf(“The value of a is %d”,a);

 printf does not supply new line automatically. Thus 
‘\n’ is used



Integer Examples
 printf(“%d”,9678);

 printf(“%6d”,9678);

 printf(“%2d”,9678);

 printf(“%-6d”,9678);

 printf(“%06d”,9678);     

9 6 7 8

9 6 7 8

9 6 7 8

9 6 7 8

0 0 9 6 7 8



Real Examples
 Syntax: %w.pf

 w indicates the number of digits used for display
 p indicates the number of digits to be displayed after 

decimal
 Let y=98.7654;

 printf(“%7.4f”,y); 

 printf(“%7.2f”,y);

 printf(“-7.2f”,y);

9 8 . 7 6 5 4

9 8 . 7 7

9 8 . 7 7



String Examples
 Syntax: %w.ps

 w specifies width of field
 p specifies only first p characters of string are displayed

 Ex:
 char a[20]=“Hello World”;
 printf(“%s”,a);

H e l l o W o r l d



 printf(“%25s”,a);

 printf(“%25.4s”,a);

 printf(“%-25.7s”,a);

H e l l o W o r l d

H e l l

H e l l o W
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